您好、欢迎来到现金彩票网!
当前位置:天津快乐十分走势图 > 多普勒制导 >

卫星通讯为什么发射和接收频率不一样

发布时间:2019-09-28 18:35 来源:未知 编辑:admin

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  展开全部文名称:Doppler Effect 多普勒效应是为纪念克里斯琴·多普勒·约翰(Doppler, Christian Johann)而命名的,他于1842年首先提出了这一理论。主要内容为:物体辐射的波长因为光源和观测者的相对运动而产生变化。在运动的波源前面,波被压缩,波长变得较短,频率变得较高 (蓝移 blue shift);当运动在波源后面时,会产生相反的效应。波长变得较长,频率变得较低 (红移 red shift)。波源的速度越高,所产生的效应越大。根据光波红(蓝)移的程度,可以计算出波源循着观测方向运动的速度

  1842年奥地利一位名叫多普勒的数学家、物理学家。一天,他正路过铁路交叉处,恰逢一列火车从他身旁驰过,他发现火车从远而近时汽笛声变响,音调变尖,而火车从近而远时汽笛声变弱,音调变低。他对这个物理现象感到极大兴趣,并进行了研究。发现这是由于振源与观察者之间存在着相对运动,使观察者听到的声音频率不同于振源频率的现象。这就是频移现象。因为,声源相对于观测者在运动时,观测者所听到的声音会发生变化。当声源离观测者而去时,声波的波长增加,音调变得低沉,当声源接近观测者时,声波的波长减小,音调就变高。音调的变化同声源与观测者间的相对速度和声速的比值有关。这一比值越大,改变就越显著,后人把它称为“多普勒效应”。 把声波视为有规律间隔发射的脉冲,可以想象若你每走一步,便发射了一个脉冲,那么在你之前的每一个脉冲都比你站立不动时更接近你自己。而在你后面的声源则比原来不动时远了一步。或者说,在你之前的脉冲频率比平常变高,而在你之后的脉冲频率比平常变低了。 所谓多普勒效应就是当发射源与接收体之间存在相对运动时,接收体接收的发射源发射信息的频率与发射源发射信息频率不相同,这种现象称为多普勒效应,接收频率与发射频率之差称为多普勒频移。声音的传播也存在多普勒效应,当声源与接收体之间有相对运动时,接收体接收的声波频率f与声源频率f存在多普勒频移Δf(doppler shift)即 Δf=f-f 当接收体与声源相互靠近时,接收频率f大于发射频率f即: Δf0 当接收体与声源相互远离时,接收频率f小于发射频率 即: Δf0 可以证明若接收体与声源相互靠近或相互远离的速度为v,声速为c,则接收体接收声波的多普勒频率为: f= f·(c+-v)/(c-+v) 括号中分子和分母的上行运算和下行运算分别为“接近”和“远离”之意。

  多普勒效应不仅仅适用于声波,它也适用于所有类型的波形,包括光波。科学家Edwin Hubble使用多普勒效应得出宇宙正在膨胀的结论。他发现远处银河系的光线频率在变低,即移向光谱的红端。这就是红色多普勒频移,或称红移。若银河系正移向蓝端,光线就成为蓝移。 在卫星移动通信中,当飞机移向卫星时,频率变高,远离卫星时,频率变低,而且由于飞机的速度十分快,所以我们在卫星移动通信中要充分考虑“多普勒效应”。另外一方面,由于非静止卫星本身也具有很高的速度,所以现在主要用静止卫星与飞机进行通信,同时为了避免这种影响造成我们通信中的问题,我们不得不在技术上加以各种考虑。也加大了卫星移动通信的复杂性。 声波的多普勒效应也可以用于医学的诊断,也就是我们平常说的彩超。彩超简单的说就是高清晰度的黑白B超再加上彩色多普勒,首先说说超声频移诊断法,即D超,此法应用多普勒效应原理,当声源与接收体(即探头和反射体)之间有相对运动时,回声的频率有所改变,此种频率的变化称之为频移,D超包括脉冲多普勒、连续多普勒和彩色多普勒血流图像。彩色多普勒超声一般是用自相关技术进行多普勒信号处理,把自相关技术获得的血流信号经彩色编码后实时地叠加在二维图像上,即形成彩色多普勒超声血流图像。由此可见,彩色多普勒超声(即彩超)既具有二维超声结构图像的优点,又同时提供了血流动力学的丰富信息,实际应用受到了广泛的重视和欢迎,在临床上被誉为“非创伤性血管造影”。

  展开全部短波通信 短波通信是无线兆赫。发射电波要经电离层的反射才能到达接收设备,通信距离较远,是远程通信的主要手段。由于电离层的高度和密度容易受昼夜、季节、气候等因素的影响,所以短波通信的稳定性较差,噪声较大。目前,它广泛应用于电报、电话、低速传真通信和广播等方面。

  尽管当前新型无线电通信系统不断涌现,短波这一古老和传统的通信方式仍然受到全世界普遍重视,不仅没有被淘汰,还在快速发展。

  一、短波是唯一不受网络枢钮和有源中继体制约的远程通信手段,一但发生战争或灾害,各种通信网络都可能受到破坏,卫星也可能受到攻击。无论哪种通信方式,其抗毁能力和自主通信能力与短波无可相比;

  近年来,短波通信技术在世界范围内获得了长足进步。这些技术成果理应被中国这样的短波通信大国所用。用现代化的短波设备改造和充实我国各个重要领域的无线通信网,使之更加先进和有效,满足新时代各项工作的需要,无疑是非常有意义的。

  这里简要介绍短波通信的一般概念,优化短波通信的经验,以及一些热门的新技术,如有错误之处,欢迎阅正。

  无线毫米的电磁波。根据电磁波传播的特性,又分为超长波、长波、中波、短波、超短波等若干波段,其中:超长波的波长为100,000米~10,000米,频率3~30千赫;长波的波长为10,000米~1,000米,频率30~300千赫;中波的波长为1,000米~100米,频率300千赫~1.6兆赫;短波的波长为100米~10米,频率为1.6~30兆赫;超短波的波长为10米~1毫米,频率为30~300,000兆赫(注:波长在1米以下的超短波又称为微波)。频率与波长的关系为:频率=光速/波长。

  电波在各种媒介质及其分界面上传播的过程中,由于反射、折射、散射及绕射,其传播方向经历各种变化,由于扩散和媒介质的吸收,其场强不断减弱。为使接收点有足够的场强,必须掌握电波传播的途径、特点和规律,才能达到良好的通信效果。

  沿大地与空气的分界面传播的电波叫地表面波,简称地波。地波的传播途径如图1.1 所示。其传播途径主要取决于地面的电特性。地波在传播过程中,由于能量逐渐被大地吸收,很快减弱(波长越短,减弱越快),因而传播距离不远。但地波不受气候影响,可靠性高。超长波、长波、中波无线电信号,都是利用地波传播的。短波近距离通信也利用地波传播。

  直射波又称为空间波,是由发射点从空间直线传播到接收点的无线电波。直射波的传播途径如图1.2 所示。直射波传播距离一般限于视距范围。在传播过程中,它的强度衰减较慢,超短波和微波通信就是利用直射波传播的。

  在地面进行直射波通信,其接收点的场强由两路组成:一路由发射天线直达接收天线,另一路由地面反射后到达接收天线,如果天线高度和方向架设不当,容易造成相互干扰(例如电视的重影)。

  限制直射波通信距离的因素主要是地球表面弧度和山地、楼房等障碍物,因此超短波和微波天线直射波传播)

  天波是由天线向高空辐射的电磁波遇到大气电离层折射后返回地面的无线所示。电离层只对短波波段的电磁波产生反射作用,因此天波传播主要用于短波远距离通信。

  散射传播是由天线辐射出去的电磁波投射到低空大气层或电离层中不均匀介质时产生散射,其中一部份到达接收点。散射传播距离远,但是效率低,不易操作,使用并不广泛。

  电离层是指从距地面大约60公里到2000公里处于电离状态的高空大气层。上疏下密的高空大气层,在太阳紫外线、太阳日冕的软X射线和太阳表面喷出的微粒流作用下,大气气体分子或原子中的电子分裂出来,形成离子和自由电子,这个过程叫电离。产生电离的大气层称为电离层。电离层分为D、E、F1、F2四层。D层高度60~90公里,白天可反射2~9MHz的频率。E层高度85~150公里,这一层对短波的反射作用较小。F层对短波的反射作用最大,分为F1和F2两层。F1层高度150~200公里,只在日间起作用,F2层高度大于200公里,是F层的主体,日间夜间都支持短波传播。

  电离层的浓度对工作频率的影响很大,浓度高时反射的频率高,浓度低时反射的频率低。电离的浓度以单位体积的自由电子数(即电密度)来表示。

  电离层的高度和浓度随地区、季节、时间、太阳黑子活动等因素的变化而变化,这决定了短波通信的频率也必须随之改变。

  电离层最高可反射40MHz的频率,最低可反射1.5MHz的频率。根据这一特性,短波工作频段被确定为1.6MHz - 30MHz。

  如前所述,地波沿地球表面传播,其传播距离取决于地表介质特性。海面介质的电导特性对于电波传播最为有利,短波地波信号可以沿海面传播1000公里左右;陆地表面介质电导特性差,对电波衰耗大,而且不同的陆地表面介质对电波的衰耗程度不一样(潮湿土壤地面衰耗小,干燥沙石地面衰耗大)。短波信号沿地面最多只能传播几十公里。地波传播不需要经常改变工作频率,但要考虑障碍物的阻挡,这与天波传播是不同的。

  短波的主要传播途径是天波。短波信 号由天线发出后,经电离层反射回地面,又由地面反射回电离层,可以反射多次,因而传播距离很远(几百至上万公里),而且不受地面障碍物阻挡。但天波是很不 稳定的。在天波传播过程中,路径衰耗、时间延迟、大气噪声、多径效应、电离层衰落等因素,都会造成信号的弱化和畸变,影响短波通信的效果。

http://differmind.com/duopulezhidao/677.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有